Publications
18. Lee, Y.; Shin, J.; Shin, S.; Kim, E. A.; Lee, J. Y.; Gwak, N.; Kim, S.; Seo, J.; Kong, H.; Yeo, D.; Na, J.; Kim, S.; Lee, J.; Cho, S.-Y.; *Lee, J.; *Kim, T. A.; *Oh, N. Ring-Opening Polymerization of Surface Ligands Enables Versatile Optical Patterning and Form Factor Flexibility in Quantum Dot Assemblies. Advanced Materials 2025, 37, 2415436. DOI: https://doi.org/10.1002/adma.202415436
17. Park, G.; You, D.; An, J.; *Choi, S.; *Bae, S.; *Lee, J. Boronic Ester Crosslinked Gels for High Strain Rate Stress Wave Attenuation. Composites Research 2024, 37(6), 441-446 DOI: https://https://doi.org/10.7234/composres.2024.37.6.441
16. Park, J.; *Lee, J. Shockwave Dissipation Strategies Harnessing Soft Composites with Ionic Liquid Inclusion. Macromolecular Research 2024, DOI: https://doi.org/10.1007/s13233-024-00343-w Accepted
15. Kim, Y.; Lim, J.; Kim, HS.; Lee, J.; Chun, Y.; Cho, DH.; Kang, CS., Choi, S. Transient Viscosity Adjustment Using a Coaxial Nozzle for Electrospinning Nanofibers from Non-Spinnable Pure m-Poly(hydroxyamide). Polymers 2024, 16 (23), 3414 DOI: https://doi.org/10.3390/polym16233414
14. Kim, K.; Kim, M.; Kim, Y.; Kim, J.; Lim, J.; Lee, W.; Kim, HS.; *Cho, DH .; *Lee, J.; *Choi, S. Melt Spinnability Comparison of Mechanically and Chemically Recycled Polyamide 6 for Plastic Waste Reuse. Polymers 2024, 16 (22), 3152 DOI: https://doi.org/10.3390/polym16223152
13. †Lee, J.; †Park, G.; †Lee, D.; Shin, J.; Ahn, C.; *Lee, J.; *Kim, T., A. Principles for Designing Sustainable and High-Strain Rate Stress Wave Dissipating Materials. Materials Horizons 2024, 11, 5220-5229 DOI: https://doi.org/10.1039/D4MH00868E. Front cover
12. Nguyen, D. K. T.; Park, J.; Park, G.; *Lee, J. Laser-Induced Shockwaves as a Rapid and Non-Contact Technique for 2D Patterning of Colloidal Monolayer Crystals. Advanced Materials Interfaces 2024, 2301000. DOI: https://doi.org/10.1002/admi.202301000
11. Kwon, Y.; Seo, S. E.; Lee, J.; Berezvai, S.; Read de Alaniz, J.; Eisenbach, C. D.; McMeeking, R. M.; Hawker, C. J.; *Valentine, M. T. 3D-Printed Polymer Foams Maintain Stiffness and Energy Dissipation under Repeated Loading. Composites Communications 2023, 37, 101453. DOI: https://doi.org/10.1016/j.coco.2022.101453
10. Park, M.; Stricker, F.; Campos, J. G.; Clark, K. D.; Lee, J.; Kwon, Y.; Valentine, M. T.; *Read de Alaniz, J. Design of Surface-Aligned Main-Chain Liquid-Crystal Networks Prepared under Ambient, Light-Free Conditions Using the Diels–Alder Cycloaddition. ACS Macro Letters 2023, 12 (1), 33-39.
9. Zhang, W.-J.; Li, S.; Vijayan, V.; Lee, J. S.; Park, S. S.; Cui, X.; Chung, I.; Lee, J.; Ahn, S.-k.; Kim, J. R.; et al. ROS- and pH-Responsive Polydopamine Functionalized Ti3C2Tx MXene-Based Nanoparticles as Drug Delivery Nanocarriers with High Antibacterial Activity. Nanomaterials 2022, 12 (24), 4392. DOI : https://doi.org/10.3390/nano12244392
8. *Sroda, M. M.; *Lee, J.; Kwon, Y.; Stricker, F.; Park, M.; Valentine, M. T.; Read de Alaniz, J. Role of Material Composition in Photothermal Actuation of DASA-Based Polymers. ACS Appl. Polym. Mater. 2022, 4(1), 141-149. https://doi.org/10.1021/acsapm.1c01108 (* co-1st authors)
7. Lee, J.; Sroda, M. M.; Kwon, Y.; El-Arid, S.; Seshadri, S.; Gockowski, L. F.; Hawkes, E. W.; Valentine, M. T.; Read de Alaniz, J. Tunable Photothermal Actuation Enabled by Photoswitching of Donor–Acceptor Stenhouse Adducts. ACS Appl. Mater. Interfaces 2020, 12 (48), 54075–54082. https://doi.org/10.1021/acsami.0c15116
6. Seshadri, S.; Gockowski, L. F.; Lee, J.; Sroda, M.; Helgeson, M. E.; Read de Alaniz, J.; Valentine, M. T. Self-Regulating Photochemical Rayleigh-Bénard Convection Using a Highly-Absorbing Organic Photoswitch. Nat. Commun. 2020, 11 (1), 2599. https://doi.org/10.1038/s41467-020-16277-7
5. Lee, J.; Jing, B. B.; Porath, L. E.; Sottos, N. R.; Evans, C. M. Shock Wave Energy Dissipation in Catalyst-Free Poly(Dimethylsiloxane) Vitrimers. Macromolecules 2020, 53 (12), 4741–4747. https://doi.org/10.1021/acs.macromol.0c00784
4. Lee, J.; Lau, V. M.; Ren, Y.; Evans, C. M.; Moore, J. S.; Sottos, N. R. Effect of Polymerized Ionic Liquid Structure and Morphology on Shockwave Energy Dissipation. ACS Macro Lett. 2019, 8 (5), 535–539. https://doi.org/10.1021/acsmacrolett.9b00133
3. *Ren, Y.; *Lee, J.; Hutchins, K. M.; Sottos, N. R.; Moore, J. S. Crystal Structure, Thermal Properties, and Shock-Wave-Induced Nucleation of 1,2-Bis(Phenylethynyl)Benzene. Cryst. Growth Des. 2016, 16 (11), 6148–6151. https://doi.org/10.1021/acs.cgd.6b01119 (* co-1st authors)
2. *Yang, K.; *Lee, J.; Sottos, N. R.; Moore, J. S. Shock-Induced Ordering in a Nano-Segregated Network-Forming Ionic Liquid. J. Am. Chem. Soc. 2015, 137 (51), 16000–16003. https://doi.org/10.1021/jacs.5b10721 (* co-1st authors)
1. Jin, J.; Lee, J. J.; Bae, B.-S.; Park, S. J.; Yoo, S.; Jung, K. Silica Nanoparticle-Embedded Sol–Gel Organic/Inorganic Hybrid Nanocomposite for Transparent OLED Encapsulation. Org. Electron. 2012, 13 (1), 53–57. https://doi.org/https://doi.org/10.1016/j.orgel.2011.09.008